科研绘图sci画图作图学术杂志封面设计toc示意图文章配图医学动画
here, low-energy poly(ethylene terephthalate) (pet) chemical recycling in water: pet copolymers with diethyl 2,5-dihydroxyterephthalate (dhte) undergo selective hydrolysis at dhte sites, autocatalyzed by neighboring group participation, is demonstrated. liberated oligomeric subchains further hydrolyze until only small molecules remain. poly(ethylene terephthalate-stat-2,5-dihydroxyterephthalate) copolymers were synthesized via melt polycondensation and then hydrolyzed in 150–200 °c water with 0–1 wt% zncl2, or alternatively in simulated sea water. degradation progress follows pseudo-first order kinetics. with increasing dhte loading, the rate constant increases monotonically while the thermal activation barrier decreases. the depolymerization products are ethylene glycol, terephthalic acid, 2,5-dihydroxyterephthalic acid, and bis(2-hydroxyethyl) terephthalate dimer, which could be used to regenerate virgin polymer. composition-optimized copolymers show a decrease of nearly 50% in the arrhenius activation energy, suggesting a 6-order reduction in depolymerization time under ambient conditions compared to that of pet homopolymer. this study provides new insight to the design of polymers for end-of-life while maintaining key properties like service temperature and mechanical properties. moreover, this chemical recycling procedure is more environmentally friendly compared to traditional approaches since water is the only needed material, which is green, sustainable, and cheap.
微信扫一扫,加设计师好友
17621261539
周一至周五8:30-18:00
提升“研值”
工作人员将在1个小时内联系您。